Impact Of Environmental Variation On Host Performance Differs With Pathogen Identity: Implications For Host-Pathogen Interactions In A Changing Climate

نویسندگان

  • Ikkei Shikano
  • Jenny S. Cory
چکیده

Specialist and generalist pathogens may exert different costs on their hosts; thereby altering the way hosts cope with environmental variation. We examined how pathogen-challenge alters the environmental conditions that maximize host performance by simultaneously varying temperature and nutrition (protein to carbohydrate ratio; P:C) after exposure to two baculoviruses; one that is specific to the cabbage looper, Trichoplusia ni (TnSNPV) and another that has a broad host range (AcMNPV). Virus-challenged larvae performed better on more protein-biased diets, primarily due to higher survival, whereas unchallenged larvae performed best on a balanced diet. The environmental conditions that maximized host performance differed with virus identity because TnSNPV-challenge inflicted fitness costs (reduced pupal weight and prolonged development) whereas AcMNPV-challenge did not. The performance of TnSNPV-challenged larvae rose with increasing P:C across all temperatures, whereas temperature modulated the optimal P:C in AcMNPV-challenged larvae (slightly protein-biased at 16 °C to increasingly higher P:C as temperature increased). Increasing temperature reduced pupal size, but only at more balanced P:C ratios, indicating that nutrition moderates the temperature-size rule. Our findings highlight the complex environmental interactions that can alter host performance after exposure to pathogens, which could impact the role of entomopathogens as regulators of insect populations in a changing climate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting the Genetic Architecture of Host–Pathogen Specificity

In this essay, I argue that unraveling the full genetic architecture (i.e., the number, position, effect, and interactions among genes underlying phenotypic variation) and molecular landscape of host–pathogen interactions can only be achieved by accounting for their genetic specificity. Indeed, the outcome of host–pathogen interactions often depends on the specific pairing of host and pathogen ...

متن کامل

Pathogen fitness components and genotypes differ in their sensitivity to nutrient and temperature variation in a wild plant-pathogen association.

Understanding processes maintaining variation in pathogen life-history stages affecting infectivity and reproduction is a key challenge in evolutionary ecology. Models of host-parasite coevolution are based on the assumption that genetic variation for host-parasite interactions is a significant cause of variation in infection, and that variation in environmental conditions does not overwhelm th...

متن کامل

Adaptation of mammalian host-pathogen interactions in a changing arctic environment

Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host bio...

متن کامل

How the biodiversity sciences may aid biological tools and ecological engineering to assess the impact of climatic changes.

This paper addresses how climate changes interact with other global changes caused by humans (habitat fragmentation, changes in land use, bioinvasions) to affect biodiversity. Changes in biodiversity at all levels (genetic, population and community) affect the functioning of ecosystems, in particular host-pathogen interactions, with major consequences in health ecology (emergence and re-emergen...

متن کامل

Temperature Modulates the Secretome of the Phytopathogenic Fungus Lasiodiplodia theobromae

Environmental alterations modulate host-microorganism interactions. Little is known about how climate changes can trigger pathogenic features on symbiont or mutualistic microorganisms. Current climate models predict increased environmental temperatures. The exposing of phytopathogens to these changing conditions can have particularly relevant consequences for economically important species and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015